1. “PPP DODS Crystal Orbital Calculations of Polyene, Polyformamide, Polycytosine and Poly(s-triazine)” Kertesz, M.; Suhai, S.; Ladik, J. Acta Phys. Acad. Sci. Hung. 197436, 77-90.
  2. “On a Variational Localization of Wannier Functions” Kertesz, M.; Biczo, G. Phys. Stat. Sol. (b) 197360, 249-254.
  3. “An Extension of Takeuti’s Green’s Function Formalism For Excitons to the Many-Band Case” Kertesz, M. Phys. Stat. Sol. (b) 197462, K75-K77. (new window)
  4. “Broken-Symmetry (Spin-Restricted)Hartree-Fock Crystal Orbitals in an Infinite One-Dimensional Model” Kertesz, M. Phys. Stat. Sol. (b) 197569, K141-K144. (new window)
  5. “Comparison of Different Resolvent Matrix Methods Applicable for Studies of Local Perturbation Phenomena”
    Kertesz, M.; Biczo, G. Conf. Chem. Res. and Educ., Ljubljana, Zagreb, Ed. D. Hadzi, North-Holland, 19754, 95-108.
  6. “Ab Initio Crystal Orbital Treatment of Hydrogen Fluoride (HF) Chains” Kertesz, M.; Koller, J.; Azman, A. Chem. Phys. Lett197536, 576-579.
  7. “Ab Initio Energy Band Structure of Polysulfur Nitride, (SN)x” Kertesz, M.; Koller, J.; Azman, A.; Suhai, S. Phys. Lett. 1975A55, 107-109.
  8. “Spin Projected EHF Method III. Applications to π-Electron Systems” Mayer, I.; Kertesz, M. Int. J. Quant. Chem19759, 527-536.
  9. “Eine neue Methode zur Berechnung der Ladungsverteilung in Polymere unter Berücksichtigung der Endeffekte” Biczo, G.; Kertesz, M.; Suhai, S. Zeitschrift f. Chemie 197515, 203-204.
  10. “Ab Initio Study of a Linear of Chain of H Atoms Using Different Orbitals for Different Spin” Kertesz, M.; Koller, J.; Azman, A. Phys. Rev., B197614, 76-77. (new window)
  11. “Ab Initio Crystal Orbital Studies on Linear Chain of H Atoms” Kertesz, M.; Koller, J.; Azman, A. Theoret. Chim. Acta (Berl.) 197641, 89-91. (new window)
  12.  ”Intermediate Excitons in Polymers” Kertesz, M. Kem. Kozl. 197646, 393-397, in Hungarian.
  13. “Ab Initio Crystal Orbital Study of HCN Linear Chain” Kertesz, M.; Koller, J.; Azman, A. Chem. Phys.Lett. 197641, 146-148. (new window)
  14. “Ab Initio Studies on a Hydrogen Bonded Infinite Formic Acid Chain” Kertesz, M.; Koller, J.; Zakrajsek, E.; Azman, A. Z. Naturforsch.197631a, 637-638.
  15. “Ab Initio Crystal Orbital Study of a Polysulfur Nitride, (SN)x Chain” Kertesz, M.; Koller, J.; Azman, A. Phys. Stat. Sol. (b), 197677, K157-K160.
  16. “On the Ab Initio Crystal Orbital Method” Kertesz, M. ActaPhys. Acad. Sci. Hung. 197641, 107-123.
  17. “On the Electronic Structure of Disulfur Dinitride, S2N2: Comments on the Applicability of Semi-empirical Energy Band Methods for Polysulfur Nitride, (SN)x” ###
    Kertesz, M.; Suhai, S.; Azman, A.; Kocjan, D.; Kiss, A.I. Chem. Phys. Lett.197644, 53-57.

  18. “A Comparison of Different DODS Methods When the Number of Electrons Increases” Mayer, I.; Kertesz, M. Int. J. Quant. Chem. 197610, 961-966.
  19. “SCF All-Valence Electron Energy Band Structure of Poly(SN)” Suhai, S.; Kertesz, M. J. Phys. C., Solid State Phys. 19769, 347-350.
  20. “Quantum Chemical Studies on (SN)x” Kertesz, M.; Azman, A.; Kiss, A.I.; Koller, J. Lecture Notes in Physics, Ed. by Pal, L.; et al. Siofok, Hungary, Springer V., 197765, 611-617.
  21. “Ab Initio Hartree-Fock Crystal Orbital Studies. Energy Bands in Polyene Reconsidered” Kertesz, M.; Koller, J.; Azman, A. J. Chem. Phys. 197767, 1180-1186.
  22. “Calculated Forbidden Band Gap in Periodic Protein Models Indicating Them to be Insulators” Kertesz, M.; Koller, J.; Azman, A. Nature 1977266, 278.
  23. “Density of States for a Three-Dimensional Disordered Alloy” Pumpernik, D.; Borstnik, B.; Kertesz, M.; Azman, A. Z. Naturforsch.197732a, 295-298.
  24. “2-3 Benzacridinium (TCNQ)2: A Small Band Gap Semiconductor” Mihaly, G.; Said, G.; Gruner, G.; Kertesz, M. Solid State Comm.197721, 1115-1118. (new window)
  25. “Non Empirical Calculations of Hydrogen Fluoride (HF) Cluster and Chain Dipole Moments” Kertesz, M.; Koller, J.; Azman, A. J. Mol. Structure 1977, 36, 336-338. (new window)
  26. “Ab Initio Crystal Orbital Treatment of a Disordered System” Kertesz, M.; Koller, J.; Azman, A. Z.Naturforsch 197732a, 453-455.
  27. “Electronic Structure and Transport Properties of Polypeptides: An Ab Initio Crystal Orbital Study of a Period Polyglycine Chain” Kertesz, M.; Koller, J.; Zakrajsek, E.; Azman, A. Phys. Rev.1978B18, 5649-5655.
  28. “Ab Initio Hartree-Fock Crystal Orbital Studies II. Energy Bands of an Infinite Carbon Chain” Kertesz, M.; Koller, J.; Azman, A. J. Chem. Phys. 197868, 2779-2782.
  29. “On the Electronic Structure of Polydiacetylenes as Studied by the Ab Initio Crystal Orbital Method” Kertesz, M.; Koller, J.; Azman, A. Chem. Phys. 197827, 273-280. (new window)
  30. “Ab Initio Crystal Orbital Study of Hydrogen Fluoride Chain. Basis Set Dependence” 
    Kertesz, M.; Koller, J.; Azman, A. Z. Naturforsch. 1978, 33a, 249-250.
  31. “Structure of Infinite Polyenes: Ab Initio Quantum Chemical Study” Kertesz, M.; Koller, J.; Azman, A. J.C.S. Chem. Comm. 1978, 575-576.
  32. “Electronic Structures of Polydiacetylene Backbones” Kertesz, M.; Koller, J.; Azman, A. Chem. Phys.Lett. 1978, 56, 18-19. (new window)
  33. “Electronic Structure and Transport Properties of Polypeptides: Polyglycine Chain With Hydrated Side Group” Kertesz, M.; Koller, J.; Azman, A. Z.Naturforschung 1978, 33a, 1392.
  34. “Crystal Orbital Studies of Polymers With Defects”
    Kertesz, M.; Koller, J.; Zakrajsek, E.; Azman, A. Chem. Phys. Lett.197853, 446-448.

  35. “Coulomb Effects in the Organic Charge Transfer Salt TTT2I3” Kamaras, K.; Kertesz, M. Solid State Comm. 197828, 607-611. (new window)
  36. “Complex TCNQ Salts With Asymmetric Donors: I. Transport Properties” Holczer, K.; Mihaly, G.; Janossy, A.; Gruner, G.; Kertesz, M. J. Phys. C.197811, 4707-4725.
  37. “On Hartree-Fock Orbital and Total Energies in Extended Systems” Kertesz, M.; Koller, J.; Azman, A. J. Chem. Phys. 197869, 2937.
  38. “On the Electronic Properties of Polypeptides” Kertesz, M. Magy.,Fiz.Foly. 197826, 431-442.
  39. “Energy Band Structure of (SN)x Chain: Unrestricted Hartree-Fock and Charge Density Wave Solutions” Kertesz, M.; Koller, J.; Azman, A. Int. J. Quant. Chem. 197814, 239.
  40. “Numerical Calculation of Localized Wannier Functions from Ab Initio Hartree-Fock Wave Functions” Kertesz, M.; Koller, J.; Azman, A. Solid State Comm. 197930, 329-330 (new window).
  41. “Different Orbitals for Different Spins: Fully Variational Ab Initio Studies on Hydrogen and Carbon Atomic Chains, Polyene andPoly(sulphur nitride)” Kertesz, M.; Koller, J.; Azman, A. Phys. Rev. 1979B19, 2034-2040.
  42. “Electronic Structure and Spectra of Tetrathiotetracene and Related Molecules” Kiss, A.I.; Kertesz, M.; Carsky, P.; Wedel, H. Tetrahedron 197935, 515-518. (new window)
  43. “Deuteron Quadrupole Coupling Constant in a Hydrogen Fluoride Chain” Kertesz, M.; Koller, J.; Jagodic, F.; Azman, A. J. Mol. Struct.197953, 143-145. (new window)
  44. “On Quantum Chemical Calculation of Hopping Integrals in Organic Solids” Kertesz, M.; Koller, J.; Azman, A. Quasi One-Dimensional Conductors I, Proceedings, Dubrovnik, Barisic, S.; Bjelis, A.; Cooper, J.R.;Leontic, B., Lecture Notes in Physics, Vol. 95, Springer V., Berlin, 1979, 171-173.
  45. “Numerical Estimations of Coulomb Effects in bis(tetrathiotetracene) triiodide, TTT2T3” Kertesz, M.; Kamaras, K. Lecture Notes in Physics 197995, 84-87.
  46. “Bond Length Alternation and Energy Gap in (CH)x. Application of the Intermediate Exciton Formalism”
    Kertesz, M. Chem. Phys. 197944, 349-356.

  47. “Ferromagnetic State of A Model Chain” Kertesz, M.; Koller, J.; Azman, A. Z. Naturforsch. 197934a, 527-528.
  48. “Localized Orbitals in an Extended Hydrogen-Bonded System, (HF)x” Kertesz, M.; Koller, J.; Azman, A. J. Mol. Structure 197956, 289-292.
  49. “Crystal Orbital Studies of the (HCN)x Chain” Kertesz, M.; Koller, J.; Azman, A. Chem. Phys. Lett. 198069, 225-226. (new window)
  50. “Nuclear Distortion of the Equidistant Arrangement in trans-polyacetylene, (CH)x” Kertesz, M.; Koller, J.; Azman, A. Int. J. Quantum Chem. 198018, 645-650. (new window)
  51. “Ab Initio Techniques for Ground State Calculations in Polymers” Kertesz, M.; Koller, J.; Azman, A. Recent Advances in the Quantum Theory of Polymers, Proceedings, Namur (1979), Andre, J.M.; Bredas, J.L.; Delhalle, J.; Ladik, J.; Leroy, G.; Moser, C., Lecture Notes in Physics, Vol. 113, Springer V., Berlin1980, 56-79.
  52. “Need for Electronic Correlation Calculations in Polymers” Kertesz, M.; Koller, J.; Azman, A. Int. J. Quantum Chem. Symp.198014, 463-466.
  53. “On the Electronic Structure of Periodic Polyglycine” Kertesz, M.; Koller, J.; Azman, A. Int. J. Quantum Chem. Quant. Biol. Symp.19807, 177-179.
  54. “On the use of Wannier functions in the CI calculation of the extended system” M.  Kertesz, J. Koller A. Azman, Journal of Molecular Structure 1980, 61, 313-316. (new window)
  55. “Optical Rotatory Strength Calculation by Evaluating the Gradient Matrix Through the Equation of Motion” Surjan, P.R.; Kertesz, M. Theoret. Chim. Acta (Berl.), 198055, 103-113.
  56. “Bond Length Alternation and Forbidden Energy Gap in Conjugated Periodic Polymers” Kertesz, M.; Koller, J.; Azman, A. Photon Electron and Ion Probes of Polymer Structure and Properties, Dwight, W.; Fabish, T.J.; Thomas, H.R., Eds., Am. Chem. Soc.Symp. Series 1981162, 105-111.
  57. “Anisotropy of the Dielectric Constant of Polyacetylene” Devreux, F.; Dory, I.; Mihaly, L.; Pekker, S.; Janossy, A.; Kertesz, M. J. Polymer Sci., Polymer, Phys. Ed. 198119, 743-747.
  58. “Trapping of Phase Kinks in Polyacetylene” Kertesz, M.; Surjan, P.R. Solid State Comm. 198139, 611-614.
  59. “Electronic Density of States of a Stereo-irregular Polyethylene” Kertesz, M.; Gondor, G. J. Phys. C. Solid State Phys. 198114, L851-L854.
  60. “Exact Exchange Asymptotics in Polymer Hartree-Fock Calculations” Monkhorst, H.J.; Kertesz, M. Phys. Rev. B 198124, 3015-3024.
  61. “Smooth Energy Band Interpolation with Gradient Utilization” Kertesz, M.; Hughbanks, T. Phys. Rev. 1981B24, 6870-6879.
  62. “On Trapping of Phase Kinks in Polyacetylene” Kertesz, M.; Surjan, P.R.; Holczer, K. Mol. Cryst. Liquid Cryst. 1981,77, 341-349.
  63. “Electronic Structure of Polymers” Kertesz, M. Adv. Quantum Chem. 198215, 161-214.
  64. “Interpolation of Singular Energy Bands” Kertesz, M.; Vonderviszt, F. Phys. Rev. 1982B25, 7834-7835.
  65. Electronic Structure of Long Polyiodide Chains” Kertesz, M.; Vonderviszt, F. J. Am. Chem. Soc. 1982104, 5889-5892.
  66. “Application of the Intermediate Exciton Formalism to H2 Molecular Chains” Kertesz, M.; Koller, J.; Azman, A. CroaticaChem.Acta 198255, 85-89.
  67. “Change of Geometry of Polyacetylene Upon Charge Transfer” Kertesz, M.; Vonderviszt, F.; Pekker, S. Chem. Phys. Lett. 198190, 630-633.
  68. “Localization and Delocalization: Distinction Between Through Space and Through Bond Interactions” Surjan, P.J.; Mayer, I.; Kertesz, M. J. Chem. Phys. 198277, 2454-2559.
  69. “Change of C-C Bond Length in Layers of Graphite Upon Charge Transfer” Kertesz, M.; Vonderviszt, F.; Hoffmann, R. In: Intercalated Graphites, Ed. by Dresselhaus, M.S.; Dresselhaus, G.; Fisher, J.E.; Moran, M.J. Elsevier, 1983, p. 141-143.
  70. “Ab Initio Numerical Studies on Density-Matrix Asymptotics in Extended Systems” Surjan, P.R.; Kertesz, M.; Karpfen, A.; Koller, J. Phys. Rev.1983, B27, 7583-7588.
  71. “Higher Order Peierls Distortion of One-Dimensional Carbon Skeletons” Kertesz, M.; Hoffmann, R. Solid State Comm. 1983, 47, 97-102.
  72. “A Hypothetical Metallic Allotrope of Carbon” Hoffmann, R.; Hughbanks, T.; Kertesz, M.; Bird, P.H. J. Am. Chem. Soc. 1983. 105, 4831-4832.
  73. “Preparation and Properties of High Quality Polyacetylene” Knoll, P.; Kuzmany, H.; Surjan, P.R.; Kertesz, M. J. Phys. Colloq. 1983, C3, Supp. 6, 155-158.
  74. “Electronic Transition Moments and Optical Absorption for trans-Polyacetylene” Kuzmany, H.; Surjan, P.R.; Kertesz, M. Solid State Commun. 1983, 48, 243-247. (new window)
  75. “The Graphite-to-Diamond Transformation” Kertesz, M.; Hoffmann, R. J. Solid State Chem. 1984, 54, 313-319. (new window)
  76. “Octahedral vs. Trigonal-prismatic Coordination and Clustering in Transition Metal Dichalcogenides” Kertesz, M.; Hoffmann, R. J. Am. Chem. Soc. 1984, 54, 313-319.
  77. “Electronic Structure and Metallization of Silicon” Biswas, R.; Kertesz, M. Phys. Rev. 1984, B29, 1791-1797.
  78. “The Gradient of the Total Energy for Metals” Kertesz, M. Chem. Phys. Lett. 1984, 106, 443-446.
  79. “Energy Bands in Solids: Bonding, Energy Levels and Orbitals” Kertesz, M. Int. Rev. Phys. Chem. 1985, 4, 125-164.
  80. “Changes of Lattice Geometries Upon Charge Transfer” Kertesz, M. Mol. Cryst. Liquid Cryst. 1985, 126, 103-110.
  81. “Electronic Structure of Highly Doped Conducting Polymers” Kertesz, M. Int. J. Quantum Chem. 1986, 29, 1165-1176.
  82. “Ionic Charge Transfer Complexes. 2. Partially Localized Acceptors and Donors” El-Shall, M.S.; Kafafi, S.A.; Mautner, M.; Kertesz, M. J. Am. Chem. Soc.1986, 108, 4391-4397.
  83. “An Irregular Dependence of the Total Electronic Energy of Clusters on Their Size” Cioslowski, J.; Kertesz, M. J. Chem. Phys. 1986, 85, 7193-7197.
  84. “Energy Gap and Bond Length Alternation in Heterosubstituted Narrow Gap Semiconducting Polymers” Kertesz, M.; Lee, Y.S. J. Phys. Chem. 1987, 91, 2690-2692.
  85. “Bonding and Electronic Structure of Conducting Mercury Networks” Kertesz, M.; Guloy, A. Inorganic Chemistry 1987, 26, 2852-2857.
  86. “Connected Moments Expansion Calculations of the Correlation Energy in Small Molecules” Cioslowski, J.; Kertesz, M.; Surjan, P.R.; Poirier, R.A. Chem. Phys. Lett.1987, 138, 516-519. (new window)
  87. “The Effect of Additional Fused Rings on the Stabilities and the Band Gaps of Hetero-conjugated Polymers” Lee, Y.S.; Kertesz, M. Int. J. Quantum Chem. 1987, Q. Ch. Symp. 21, 163-170.
  88. “Davidon-Fletcher-Powell vs. Broyden-Fletcher-Goldfarb-Shannon Optimization Procedures in Semi-empirical Molecular and Solid State MNDO Calculations” Cioslowski, J.; Kertesz, M. QCPE Bull. 19877, 159-161.
  89. “Structure-property Predictions for New Planar Forms of Carbon: Layer Phases Containing sp2 and sp Atoms” Baughman, R.H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687-6699.
  90. “The Effect of Heteroatom Substitution on the Bandgap of Conjugated Polymers” Lee, Y.S.; Kertesz, M. J. Chem. Phys. 1988, 88, 2609-2617.
  91. “Electronic Structure of BC3” Lee, Y.S.; Kertesz, M. J. Chem. Soc. Chem. Comm. 1988, p. 75
  92. “Note on the Finite Number of Interacting Neighbors and the Finite Number of k-points Effects on the Total Electronic Energy of a Metallic Polymer” Cioslowski, J.; Kertesz, M. J. Chem. Phys. 1988, 88, 2088-2090.
  93. “Band Structure Calculation of Extended Poly(Cu-Phthalocyanine) One-Dimensional and Two-Dimensional Polymers” Gomez-Romero, P.; Lee, Y.-S.; Kertesz, M. Inorg. Chem. 1988, 27, 3672-3675.
  94. “Inorganic Rings, Intact and Cleaved, Between Two Metal Fragments” Tremel, W.; Hoffmann, R.; Kertesz, M. J. Am. Chem. Soc. 1989, 111, 2030-2039.
  95. “Electronic Structure of Small Gap Polymers” Kertesz, M.; Lee, Y.S. Synth. Met. 1989, 28, C545-C552. (new window)
  96. “Structure and Electronic Structure of Polyacene” Kertesz, M.; Lee, Y.S.; Stewart, J.J.P. Int. J. Quantum Chem.1989, 35, 305-313. (new window)
  97. “Chemisorption on Metals: The Method of Moments Point of View” Cioslowski, J.; Kertesz, M. J. Phys. Chem. 1989, 93, 3237-3240.
  98. “Conformation Study of Helical Main Group Polymers: Organic and Inorganic, Trans and Gauche” Cui, C.X.; Kertesz, M. J. Am. Chem. Soc. 1989, 111, 4216-4224. (new window)
  99. “Superdegeneracies in Extended Systems: A Prerequisite for Ferromagnets?” Hughbanks, T.; Kertesz, M. in: Ferromagnetic and High Spin Molecular Based Materials ACS Symposiums Series, 197th Meeting, Dallas, April 9-14, 1989, Eds. J.S. Miller and D.A. Dougherty 1989; and Mol. Cryst. Liq. Cryst., 1989 176, 115-124.
  100. “The Effect of Helical Conformation on the Electronic Structures of sigma- and π-Conjugated Polymers” Cui, C.X.; Kertesz, M. in: “International Winterschool on Electronic Properties of Polymers and Related Compounds, IEWEPP 1989″ Kuzmany, H.; Mehring, M.; Roth, S., Eds., Springer Verlag, Berlin, 1989.
  101. “Two Helical Conformations of Polythiophene, Polypyrrole and Their Derivatives” Cui, C.X.; Kertesz, M. Phys. Rev. B 1989, 40, 9661-9670.
  102. “Helical Conformations of Conducting Polymers” Kertesz, M.; Cui, C.X. Mat. Res. Soc. Symp. Proc. 1990173, 391-396.
  103. “Theoretical Evaluation of Young’s Moduli of Polymers” Hong, S.Y.; Kertesz, M. Phys. Rev. B. 1990, 41, 11368-11378.
  104. “Dependence of Young’s Modulus of Trans-Polyacetylene Upon Charge Transfer” Hong, S.Y.; Kertesz, M. Phys. Rev. Lett. 1990, 64, 3031-3034.
  105. “Bonding in Crystals Containing One-Dimensional Bridged and Nonbridged Group 11 and 12 Linear, Zigzag and Helical Chains” Cui, C.X.; Kertesz, M. Inorg. Chem. 1990, 29, 2568-2575.
  106. “Torsional Potentials of Simple Polysilane Derivatives” Cui, C.X.; Karpfen, A.; Kertesz, M. Macromolecules 1990, 23, 3302-3308.
  107. “Extraction of Polymer Properties from Oligomer Calculations” Cui, C.X.; Kertesz, M.; Jiang, Y. J. Phys. Chem. 1990, 94, 5172-5179.
  108. “Helical Peierls Distortion: Formation of Helices of Polyketone and Polyisocyanide” Cui, C.X.; Kertesz, M. Chem. Phys. Lett. 1990, 169, 445-449.
  109. “The Importance of Energetics in the Design of Small Band Gap Conducting Polymers” Lee, Y.-S.; Kertesz, M.; Elsenbaumer, R.L. Chem. Materials 1990, 2, 526-530. (new window)
  110. “Quantum Mechanical Oligomer Approach for the Calculation of Vibrational Spectra of Polymers” Cui, C.X.; Kertesz, M. J. Chem. Phys. 1990, 93, 5257-5266. (new window)
  111. “Ab Initio Oligomer Calculations of Dynamic Properties of Polyacetylene” Cui, C.X.; Kertesz, M.; Dupuis, M. J. Chem. Phys. 1990, 93, 5890-5892 (new window).
  112. “Ab Initio Study of the Dynamical Properties of Polythiophene” Cui, C.X.; Kertesz, M.; Eckhardt, H. Synthetic Metals 199143, 3491-3496. (new window)
  113. “The Vibrational Properties and Defect Structures of Vinylene-Linked Low-Band-Gap Polymers” Eckhardt, H.; Baughman, R.H.; Buisson, J.P.; Lefrant, S.; Cui, C.X.; Kertesz, M. Synthetic Metals, 1991, 43, 3413-3418. (new window)
  114. “Conformation and Electronic Structures of Poly(ketene) and Related Conjugated Polymers: Reduction of n-π* Band Gap” Cui, C.X.; Kertesz, M. J. Am. Chem. Soc. 1991, 113, 4404-4409.
  115. “Energetics and Geometry of Conducting Polymers from Oligomers” Karpfen, A.; Kertesz, M. J. Phys. Chem. 1991, 95, 7680-7681. (new window)
  116. “Electronic Structure and Optical Absorption of Poly(biisothianaphthenemethine) and Poly(isonaphthothiophene-thiophene): a Low Band Gap Polymer” Kürti, J.; Surjan, P.R.; Kertesz, M. J. Am. Chem. Soc., 1991, 113, 9865-9867.
  117. “Structural Criteria for Conjugated Polymers Design” Kertesz, M.; Cui, C.X. in “Electronic Properties of Polymers, IWEPP’91”, S. Roth, H. Kuzmany, Eds., Springer Verlag, 1992, 397-400.
  118. “Electronic Structures of Heterocyclic Ladder Polymers; Polyphenothiazine, Polyphenoxazine, and Polyphenoquinoxaline” Hong, S.Y.; Kertesz, M.; Lee, Y.S.; Kim, O.-K. Chem. Materials, 1992, 4, 378-383. (new window)
  119. “Assignment of the Vibrational Spectra of Polysilane and its Oligomers” Cui, C.X.; Kertesz, M. Macromolecules, 1992, 25, 1103-1108.
  120. “The Effect of Side Substituent Groups on the Energy Gaps of Phenylene and Thienylene Oligomers and Polymers” Zalis, S.; Kertesz, M. Synthetic Metals, 199247, 179-186. (new window)
  121. “Geometrical and Electronic Structures of a Benzimidazo-benzophenanthroline -type Ladder Polymer (BBL)” Hong, S.Y.; Kertesz, M.; Lee, Y.S.; Kim, O.-K. Macromolecules1992, 25, 5424-5429. (new window)
  122. “Geometrical and Electronic Structures of π-Conjugated Silicon Ring Polymers” Frapper, G.; Kertesz, M. Organometallics 1992, 11, 3178-3184.
  123. “Searching for Low-Band Gap Conjugated Polymers by LHS Calculations” Kürti, J.; Surjan, P.R.; Kertesz, M. Synth. Metals 1992, 50, 537-542.
  124. “Charge Oscillations and Structure for Alkali-Metal Doped Polyacetylene” Baughman, R.H.; Murthy, N.S.; Eckhardt, H.; Kertesz, M. Phys. Rev. B. 1992, 46, 10515-10539. (new window)
  125. “Transition Metal Oligoyne Polymers” Frapper, G.; Kertesz, M. Inorganic Chem., 1993, 32, 732-740. (new window)
  126. “Interpretation of the Raman Spectra of Polyiso-thianaphthene: Is the Structure Aromatic or Quinonoid?” Cuff, L.; Kertesz, M.; Geisselbrecht, J.; Kürti, J.; Kuzmany, H. Synthetic Metals, 1993, 55-57, 564-569.
  127. “Comparison of Two Alternative Forms of Polysilole: Another Quasidegenerate Polymer?” Frapper, G., Kertesz, M. Synthetic Metals, 1993, 55-57, 4255-4259.
  128. “Electronic Structure of Ladder Polymers” Kertesz, M.; Frapper, G.; Hong, Y.S.; Lee, Y.S.; Kim, O.-K. Synthetic Metals, 1993, 55-57, 4344-4349.
  129. “Design of Small Gap Conjugated Polymers” Kürti, J.; Surjan, P.R.; Kertesz, M.; Frapper, G. Synthetic Metals, 1993, 55-57, 4338-4343. (new window)
  130. “Ab initio Oligomer Approach to Vibrational Spectra of Polymers: Comparison of Helical and Planar Poly(p- phenylene)” Cuff, L.; Kertesz, M. Macromolecules 1994, 27, 652-770.
  131. “The Role of Charge Transfer and Quinonoid Structure in the Raman Spectrum of Doped Poly(p-phenylene)” Cuff, L.; Cui, C.X.; Kertesz, M. J. Am. Chem. Soc, 1994, 116, 9269-9274.
  132. “Theoretical Prediction of the Vibrational Spectrum of Fluorene and Planarized Poly(p-phenylene)” Cuff, L.; Kertesz, M. J. Phys. Chem. 1994, 98, 12223-12231. (new window)
  133. “Structure and Electronic Structure of Low-Band-Gap Ladder Polymers” Kertesz, M. Macromolecules, 1995, 28, 1475-1480.
  134. “Raman Spectra of Poly (2,3-R,R-thieno[3,4-b]pyrazine). A New Low-Band-Gap Polymer” Kastner, J.; Kuzmany, H.; Vegh, D.; Landl, M.; Cuff, L.; Kertesz, M. Macromolecules, 1995, 28, 2922-2929. (new window)
  135. “Interpretation of the Raman Spectra and Ground State of the New Low Bandgap Polymer Poly(thienopyrazine)” Kastner, J.; Kuzmany, H.; Vegh, D.; Landl, M.; Cuff, L.; Kertesz, M. Synthetic Metals, 1995, 69, 593-594. (new window)
  136. “The Aromatic - Quinonoid Transition in Conducting Polymers” Kertesz, M. Synthetic Metals 1995, 69, 641-644. (new window)
  137. “Interpretation of the Vibrational Spectra of Planarized Poly(p-phenylene)” Cuff, L.; Kertesz, M. Scherf, U.; Müllen, K. Synthetic Metals, 1995, 69, 683-684. (new window)
  138. “Low Bandgap Ladder Polymers” Kertesz, M.; Hughbanks, T. Synthetic Metals, 1995, 69, 699-700. (new window)
  139. “Electronic Structures of Polyfluoroanthene Ladder Polymers” Kertesz, M.; Ashertehrani, A. Macromolecules199629, 940-945. (new window)
  140. “Density functional studies of molecular properties of HCN, H2O, CH2O, CH4, and C2H4” Choi, C. H.; Kertesz, M. J. Phys. Chem. 1996100, 16530-16537. (new window)
  141. “A New Partition of the Atomic Polar Tensor: the Benzene Molecule” Choi, C.H.; Kertesz, M. Chem. Phys. Lett1996263, 697-702. (new window)
  142. “Evidence of quinonoid structures in the vibrational spectra of thiophene based conducting polymers” Cuff, L.; Kertesz, M. J. Chem. Phys. 1997106, 5541-5553. (new window)
  143. “Electronic Structure of π-Conjugated Polymers” Kertesz, M. in “Handbook of Organic Conductive Molecules and Polymers” Ed. by H.S. Nalwa, John Wiley and Sons, 1997, Vol. 4. p. 147-173.
  144. “Conformational Information from Vibrational Spectra of Polyaniline” Kertesz, M.; Choi, C.H.; S.Y. Hong, S.Y. Synthetic Metals 1997,85,1073-1076. (new window)
  145. “Conformational Studies of Vibrational Properties and Electronic States of Leucoemeraldine Base and its Oligomers” Choi, C.H.; Kertesz, M. Macromolecules 199730, 620-630. (new window)
  146. “Conformational Information from Vibrational Spectra of Styrene and trans- and cis-Stilbene” Choi, C.H.; Kertesz, M. J. Phys. Chem. A 1997, 101, 3823-31. (new window)
  147. “Limitations of Current Density Functional Theories for the Description of Partial p -Bond Breaking” Choi, C.H.; Kertesz, M.; Karpfen, A. Chem. Phys. Lett. 1997276, 266-268. (new window)
  148. “The Effects of Electron Correlation on the Degree of Bond Alternation and Electronic Structure of Oligomers of Polyacetylene” Choi, C.H.; Kertesz, M.; Karpfen, A. J.Chem. Phys. 1997107, 6712-6721. (new window)
  149. “Do localized structures of [14] and [18]annulenes exist?” Choi, C.H.; Kertesz, M.; Karpfen, A. J. Am. Chem. Soc. 1997119, 11994-95. (new window)
  150. “Consistencies between experiments and quantum calculations of strained C-C single bond lengths” Choi, C.H.; Kertesz, M. Chem. Comm. 1997, 2199-2200. (new window)
  151. “Single Bond Torsional Potentials in Conjugated Systems: A comparison of Ab initio and Density Functional  Results” Karpfen, A.; Choi, C.H.; Kertesz, M. J. Phys. Chem. A1997, 101, 7426-7433. (new window)
  152. “Can CO polymerize? A Theoretical Investigation of polymeric carbon monoxide” Frapper, G.; Cui, C.-X.; Halet, J.-F.; Kertesz, M.; Saillard, J.-Y. Chem. Comm. 1997, 2011-2012. (new window)
  153. “Is a 1.9 A Bond Length in Polymeric Fullerides Possible?” Choi, C.H.; Kertesz, M. Chem. Phys. Lett. 1998282, 318-324. (new window)
  154. “Bond Length Alternation and Aromaticity in Large Annulenes” Choi, C.H.; Kertesz, M. J. Chem. Phys. 1998,108, 6681-6688 (new window).
  155. “A New Interpretation of the Valence Tautomerism of 1,6-methano[10]annulene and its Derivatives” Choi, C.H.; Kertesz, M. J. Phys. Chem. A 1998102, 3429-37. (new window)
  156. “Argon-Matrix-Isolation Raman Spectra and Density Functional Study of 1,3-Butadiene Conformers” Choi, C.H.; Kertesz, M.; Dobrin, S.; Michl, J. Theoretical Chemistry Accounts1999102, 196-206. (new window)
  157. “Conformational fingerprints in the IR and Raman Spectra of Oligoanilines: A Combined Theoretical and Experimental Study” Choi, C.H.; Kertesz, M.; Boyer, M.I.; Cochet, M.; Quillard, S.; Louarn, G; Lefrant, S. Chemistry of Materials199911, 855-857. (new window)
  158. “Carbon Nanotube Actuators” Baughman, R.H; Cui, C.X.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; Jaschinski, O.; Roth, S. ; Kertesz, M. Science 1999284, 1340-1344. (new window)
  159. “Vibrational and conformational analysis of a model compound of pernigraniline N,N ’ diphenyl-1,4-benzoquinonediimine” Boyer, M.; Choi, C.H.; Kertesz, M., et al Synth. Met., 1999101(1-3), 784-784. (new window)
  160. “Vibrational Assignment for all 46 Fundamentals in C60 and C606-: Scaled Quantum Mechanical Results Performed in Redundant Internal Coordinates and Compared to Experiments” Choi, C.H.; Kertesz, M.; Mihaly, L.  J. Phys. Chem. A2000,104 (1), 102-112. (new window)
  161. “Theoretical C-13 NMR spectra of IPR isomers of fullerenes C60, C70, C72, C74, C76, and C78 studied by density functional theory” Sun, G.Y.; Kertesz, M. J. Phys. Chem. A2000,104 (31), 7398-7403. (new window)
  162. “Theoretical evidence for the major isomers of fullerene C-84 based on C-13 NMR chemical shifts” Sun, G.Y.; Kertesz, M. New J. Chem. 200024 (10), 741-743. (new window)
  163. “Dimensional changes as a function of charge injection for carbon nanotube artificial muscles” Sun, G.Y.; Kertesz, M.; Kurti J.; Baughman, R.H. Polymeric Materials: Science and Engineering200083, 519-520.
  164. “Theoretical C13 NMR spectra of IPR isomers of fullerene C80: a density functional theory study” Sun, G.Y.; Kertesz, M. Chem. Phys. Lett. 2000328 (4-6), 387-395. (new window)
  165. “Isomer identification for fullerene C84 by C13 NMR spectrum: a density-functional theory study” Sun, G.Y.; Kertesz, M. J. Phys. Chem. A2001, 105 (21), 5212-5220. 
  166. “Identification of IPR isomers of fullerene C82 by theoretical C-13 NMR spectra calculated by density functional theory” Sun, G.Y.; Kertesz, M. J. Phys. Chem. A2001, 105 (22), 5468-5472.
  167. “Vibrational Raman Spectra of C70 and C706- Studied by Density Functional Theory” Sun, G.Y.; Kertesz, M. J. Phys. Chem. A2002106, 6381-6386.
  168. “C-13 NMR spectra for IPR isomers of fullerene C86” Sun, G.Y.; Kertesz, M. Chem .Phys. 2002276, 107-114.
  169. “Dimensional changes as a function of charge injection for trans-polyacetylene: A density functional study” Sun, G.Y.; Kürti, J.; Kertesz, M.; R. H. Baughman, J. Chem. Phys. 2002117, 7691-7697.
  170. “Dimensional Changes as a Function of Charge Injection in Single Walled Carbon Nanotubes” Sun, G.Y.; Kürti, J.; Kertesz, M.; R. H. Baughman,  J. Am. Chem. Soc. 2002124, 15076-15080.
  171. “Performance of the Vienna ab initio Simulation Package (VASP) in Chemical Applications” Sun, G.Y.; Kürti, J.; Rajczy, P.; Kertesz, M.; Hafner, J.; Kresse, G. J.  Mol. Structure: THEOCHEM, 2003624, 37-45.
  172. “Variations of the geometries and band gaps of single-walled carbon nanotubes and the effect of charge injection”,
    Sun, G.; Kürti, J.; Kertesz, M.; Baughman, R.H. J. Phys. Chem. B2003107, 6924-6931.

  173. “Dimensional Change as a Function of Charge Injection in Graphite Intercalation Compounds: a density functional theory study”,
    Sun, G.; Kürti, J.; Kertesz, M.; Baughman, R.H. J. Phys. Chem. B2003107, 6924-6931.

  174. “The Geometry and the Radial Breathing Mode of Carbon Nanotubes: Beyond the Ideal Behavior” Kürti, J.; Zólyomi, V.; Kertesz, M.; Sun, G. New Journal of Physics, Focus Issue on “Carbon Nanotubes” 20035,  125.1-25.
  175. “Spin Crossover of Spiro-Biphenalenyl Neutral Radical Molecular Conductors”
    Huang, J.; Kertesz, M. J. Am. Chem. Soc. 2003125, 13334-13335.

  176. “Bandgap Calculations for Conjugated Polymers”
    Yang, S.; Olishevski, P.; Kertesz, M. Synth Met. 2004141, 171–177.

  177. “Intermolecular Transfer Integrals for Organic Molecular Materials: Can Basis Set Convergence be Achieved?”
    Huang, J.; Kertesz, M. Chem. Phys. Lett.  2004390, 110 –115.

  178. “Individualities and Average Behavior in the Physical Properties of Small Diameter, Single-Walled Carbon Nanotubes” Kürti, J.; Zólyomi, V.; Kertesz, M.; Sun, G.; Baughman, R.H.; Kuzmany, H. Carbon. 200442, 971-978
  179. “Single-Walled Carbon Nanotubes: Geometries, Electronic Properties, and Actuation” Sun, G.; Nicklaus, M.; Kertesz, M.; Dekker Encyclopedia of Nanoscience and Nanotechnology,2004; 3605-3615
  180. “Linear Carbon Chain in the Interior of a Single-Walled Carbon Nanotube” V. Zólyomi, V.; Rusznyák, A.; Kürti,J.; Yang, S.; Kertesz, M. In Electronic Properties of Novel Materials,  Ed. by Kuzmany, H.; Fink, J.;Mehring, M.; Roth, S. Proceedings of the Winterschool in Kirchberg, Austria, American Institute of Physics, 2005, p. 440-443
  181. “Validation of Intermolecular Transfer Integral and Bandwidth Calculations for Organic Molecular Materials” Huang, J.; Kertesz, M.  J. Chem.  Phys.  2005122, Art. nu. 234707 (9 pages)
  182. “Conjugated Polymers and Aromaticity” Kertesz, M.; Choi, C.H.; Yang, S.J. Chemical Reviews2005105(10),  3448 - 3481
  183. “Electronic Structures and Charge Transport Properties of the Organic Semiconductor Bis[1,2,5]thiadiazolo-p-quinobis(1,3-dithiole), BTQBT, and Its Derivatives” Huang, J.; Kertesz, M. J. Phys. Chem. B.  2005109, 12891-12898
  184. “Bond length alternation and charge transfer in a linear carbon chain inside of a single walled carbon nanotube” Rusznyák, Á. ; Zólyomi, V.; Kürti, J.; Yang, S.; Kertesz, M. Phys. Rev. B200572, Art. nu. 155420.
  185. “One-Dimensional Metallic Conducting Pathway of Cyclohexyl-Substituted Spiro-Biphenalenyl Neutral Radical Molecular Crystal” Huang, J.S.; Kertesz, M. J. Am. Chem. Soc2006128, 1418-1419.
  186. “Stepwise Cope Rearrangement of Cyclo-Biphenalenyl via an Unusual Multicenter Covalent π-Bonded Intermediate” Huang, J.S.; Kertesz, M. J. Am. Chem. Soc2006128, 7277-7286.
  187. “Bond Length Alternation and Energy Band Gap of Polyyne” Yang, S.; Kertesz, M . J. Phys. Chem. A.  2006110, 9771-9774.
  188. “Double walled carbon nanotube with the smallest inner diameter: a first principles study” J. Kürti, V. Zólyomi, S. Yang, M. Kertesz, physica status solidi (b), 2006243, 3464-67.
  189. “Application of the linear/exponential hybrid force field scaling scheme to the bond length alternation modes of polyacetylene” Yang, S.; Kertesz, M. Chem. Phys. Lett2006432, 356-361.
  190. “Intermolecular Covalent π-π Bonding Interaction Indicated by Bond Distances, Energy Bands, and Magnetism in Biphenalenyl Biradicaloid Molecular Crystal” Huang, J.; Kertesz, M. J. Am. Chem. Soc2007129, 1634-1643.
  191. “Cooperative behaviors in carbene additions through local modifications of nanotube surfaces” Takashi Yumura, Miklos Kertesz, Chem. Mater200719, 1028-1034.
  192. “Local Modifications of Single Wall Carbon Nanotubes Induced by Bond Formation with Encapsulated Fullerenes” Takashi Yumura, Miklos Kertesz, Sumio Iijima, J. Phys. Chem. B2007111, 1099-1109.
  193. “Application of a novel linear/exponential hybrid force field scaling scheme to the longitudinal Raman active mode of polyyne” S. Yang, M. Kertesz, V. Zólyomi, J. Kürti. J. Phys. Chem. A. 2007111, 2434-2441.
  194. “Covalent Bond Formation in Defected Nanopeapods Induces Local Deformations on Nanotube Walls” Takashi Yumura, Miklos Kertesz, In: Nanowires and Carbon Nanotubes — Science and Applications. Ed. by P. Bandaru, M. Endo, I.A. Kinloch, A.M. Rao (Mater. Res. Soc. Symp. Proc. 963E, Warrendale, PA, 2007), Q20-17.
  195. “Simulations of Multi-atom Vacancies in Diamond” Istvan Laszlo, Miklos Kertesz, Yury Gogotsi In Multiscale Modeling of Materials, Ed. by R. Devanathan, M. J. Caturla, A. Kubota, A. Chartier, S. Phillpot (Mater. Res. Soc. Symp. Proc. 978E,Warrendale, PA, 2007), GG13-15.
  196. “Theoretical Analysis of Intermolecular Covalent π-π Bonding and Magnetic Properties of Phenalenyl and Spiro-Biphenalenyl Radical π-Dimers” Jingsong Huang, Miklos Kertesz, J. Phys. Chem. A2007111, 6304-6315.
  197. “Confinement Effects on Site Preferences for Cycloadditions into Carbon Nanotubes”
    Takashi Yumura, Miklos Kertesz, Sumio Iijima. Chem. Phys. Lett2007444, 155-160.

  198. “Theoretical Design of Low Band Gap Conjugated Polymers through Ladders with Acetylenic Crosspieces”
    Shujiang Yang, Miklos Kertesz, Macromolecules 200740, 6740-6747.

  199. “Linear Cn Clusters: Are They Acetylenic or Cumulenic?“
    Yang, S.; Kertesz, M. J. Phys. Chem. A. 2008112(1); 146-151.

  200. “Crystal Packing of TCNQ Anion π-radicals Governed by Intermolecular Covalent π−π Bonding: DFT Calculations and Statistical Analysis of Crystal Structures”
    Jingsong Huang, Stephanie Kingsbury, and Miklos Kertesz, Phys. Chem. Chem. Phys.200810, 2625–2635.

  201. “Electronic Structure of Helicenes, C2S Helicenes, and Thiaheterohelicenes”
    Yong-Hui Tian, Gyoosoon Park, Miklos Kertesz, Chem Mater200820, 3266-3277.

  202. “Energy gaps and their control in thiophene based polymers and oligomers”, (invited review) Miklos Kertesz, Shujiang Yang, and Yonghui Tian, in “Thiophene-Based Materials for Electronics and Photonics”, Edited by I. Perepichka and D. Perepichka, Wiley, 2009. (pp. 341-365.) 
  203. “Ladder-Type Polyenazine Based on Intramolecular S … N Interactions: A Theoretical Study of a Small-Bandgap Polymer” Tian, Y.-H.; Kertesz, M. Macromol. 200942, 6123-6127. (new window)
  204. “Roles of Conformational Restrictions of a Bismalonate in the Interactions with a Carbon Nanotube” Yumura, T.; Kertesz, M. J. Phys. Chem. C2009113, 14184-14194. (new window)
  205. “Molecular Actuators Designed with S…N(sp(2)) Hemibonds Attached to a Conformationally Flexible Pivot“ Tian, Y.-H.; Kertesz, M. Chem. Mater. 2009, 21, 2149-2157. (new window)
  206. “Low-Bandgap Pyrazine Polymers: Ladder-Type Connectivity by Intramolecular S…N(sp(2)) Interactions and Hydrogen Bonds” Tian, Y.-H.; Kertesz, M. Macromol200942, 2309-2312. (new window)
  207. “Energetics of linear carbon chains in one-dimensional restricted environment”, Kertesz, M.; Yang, S.J. Phys. Chem. Chem. Phys200911, 425-430. (new window)
  208. “Fluxional σ-Bonds of 2,5,8-Tri-tert-butyl-1,3-diazaphenalenyl Dimers: Stepwise [3,3], [5,5] and [7,7] Sigmatropic Rearrangements via p-Dimer Intermediates”, Tian, Y.-H.; Huang, J.S.; Kertesz, M., Phys. Chem. Chem. Phys. 2010, 12, 5084-5093. (new window)
  209. “The [V-C=C-V] Divacancy and the Interstitial Defect in Diamond: Vibrational Properties” Hyde-Volpe, D.; Slepetz, B.; Kertesz M. J. Phys. Chem. C, 2010, 114, 9563-9567. (new window)
  210. “Bimolecular Hydrogen Transfer in Phenalene by a Stepwise Ene-like Reaction Mechanism” Tian, Y.-H.; Kertesz, M. Chem. Comm. 2010, 46, 4282-4284 (new window).
  211. “Conformational Preferences of β–Carotene in the Confined Spaces Inside Carbon Nanotubes” Horn, P.; Kertesz, M. J. Phys. Chem. C, 2010 114, 12139–12144 (new window).
  212. “Simulations of Large Multi-atom Vacancies in Diamond“, Istvan Laszlo, Miklos Kertesz, Brad Slepetz, and Yury Gogotsi
    Diamond Relat. Mater. 2010, 19, 1153-1162. (new window)

  213. “Is There a Lower Limit to the CC Bonding Distances in Neutral Radical π-Dimers? The Case of Phenalenyl Derivatives”, Tian, Y.-H.; Kertesz, M. J. Am. Chem. Soc., 2010. 132, 10648-10649 (new window).
  214. “Why is there no in-plane H-atom transfer from aryloxy radicals? A theoretical and experimental investigation”, Chen, Y.-Z.; Tian, Y.-H.; Kertesz, M.; Weiss, R.G. Photochem. Photobiol. Sci., 2010, 9, 1203-1211. (new window)
  215. “Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory”, Slepetz, B.; Laszlo, I.; Gogotsi, Y.; Hyde-Volpe, D.; Kertesz, M. Phys. Chem. Chem. Phys. 2010, 12, 14017-14022. (new window)
  216. “Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism” Huang, J.S.; Sumpter, B.G.; Meunier, V.; Tian, Y.-H.; Kertesz, M. Chem. Mater. 2011, 23, 874-885. (new window)
  217. “Conformations of Antipyrines“, Roumanos, M.; Kertesz, M. J. Phys. Chem. A, 2011, 115, 4832-4839. (new window)
  218. “Charge Shift Bonding Concept in Radical pi-Dimers”, Tian, Y.-H.; Kertesz, M. J. Phys. Chem A, 2011, 115, 13942-13949. (new window) (Erratum: 2012, 116, 7773.) (new window)
  219. “Bonds or not bonds? Pancake bonding in 1,2,3,5-dithiadiazolyl and 1,2,3,5-diselenadiazolyl radical dimers and their derivatives”, Beneberu, H. Z.; Tian, Y.-H.; Kertesz, M. Phys. Chem. Chem. Phys. 2012, 14, 10713-10725 (new window).
  220. “Binding Interactions in Dimers of Phenalenyl and Closed-Shell Analogues”, Kolb, B.; Kertesz, M.; Thonhauser, T. J. Phys. Chem A,2013, 117, 3642-3649. (new window)
  221. “Volume Change during Thermal [4 + 4] Cycloaddition of [2.2](9,10)Anthracenophane”, Slepetz, B.; Kertesz, M. J. Am. Chem. Soc., 2013, 135, 13720–13727. (new window)
  222. “On the Anisotropy of van der Waals Atomic Radii of O, S, Se, F, Cl, Br, and I” Eramian; H.; Tian, Y.-H.; Fox, Z.; Beneberu, H.Z.; Kertesz, M. J. Phys. Chem. A. 2013, 117, 14184-14190. (new window)
  223. “Study of the Diradicaloid Character in a Prototypical Pancake Bonded Dimer: The Stacked Tetracyanoethylene (TCNE) Anion Dimer and the Neutral K2TCNE2 Complex”, Cui, Z.-h.; Lischka, H.; Mueller, T.; Plasser, F.; Kertesz, M. ChemPhysChem. 2013, 15, 165-176. VIP paper. (new window)
  224. Divacancies in diamond: a stepwise formation mechanism” Slepetz, B.; Kertesz, M. Phys. Chem. Chem. Phys. 2014, 16, 1515-1521. (new window)
  225. “Rotational Barrier in Phenalenyl Neutral Radical Dimer: Separating Pancake and van der Waals Interactions”, Zhong-hua Cui, Z.-h.; Lischka, H.; Beneberu, H.Z.; Kertesz, M. J. Am. Chem. Soc., 2014, Article ASAP, DOI: 10.1021/ja412862n (new window)